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Previous reports from this laboratory describe the
synthesis and thermolysis of 4-allylcyclobutenones 1,
precursors to the corresponding vinylketenes that un-
dergo subsequent intramolecular [2 + 2] cycloaddition
to afford bicyclo[3.2.0]heptenones.2,3 Selected examples
of these bicyclic compounds were observed to be useful
synthetic intermediates to linearly and angularly fused
polyquinanes through an anion accelerated [3,3] sigma-
tropic rearrangement and subsequent transannular ring
closure.4,5 In continuation of these studies, we now report
a new general synthesis of bicyclo[3.2.0]heptanones
through intermediary cyclobutenones 2 substituted with
homoallyl groups at position 3. An application of this new
rearrangement as a key step in the total synthesis of the
marine natural product (()-precapnelladiene is also
presented herein.6

Syntheses of the requisite 3-homoallylcyclobutenone
precursors are depicted in Scheme 1. Addition of 1-lithio-
2-methylpropene to 3was followed by trifluoroacetylation
and aqueous workup (91%). Chemoselective reduction
of the intermediate dione afforded alcohol 4 (89%),7 which
was protected as its methyl ether 5 (90%). Treatment
with vinyllithium followed by acid hydrolysis gave 6
(79%), which is a key intermediate in the synthesis of
the 3-homoallylcyclobutenones. For example, subsequent
1,6-addition of organocuprates to the dienone moiety of
6 gave 7a-c in good yields (80-89%).8 Alternatively,
treatment of 5 with the Grignard reagent from 4-bromo-
1-butene followed by acid hydrolysis afforded 7d in 70%
yield. In a similar fashion, 7e, needed for the synthesis
of (()-precapnelladiene (15), was synthesized by treat-
ment of 4 with an excess of the above Grignard reagent

followed by hydrolysis (76%) and trimethylsilylation of
the resulting 4-hydroxyl group (65%).9

Heating (xylene, 138-140 °C) 7a-e gave the bicyclo-
[3.2.0]heptanones 9a-e through a mechanistic sequence
involving electrocyclic ring opening to the vinylketene 8
followed by intramolecular [2 + 2] cycloaddition (Scheme
2). When the terminal positions (R3, R4) of the 3-homoal-
lyl side chain were unsubstituted, the bicyclo[3.2.0]-
heptanones 9a,d,e were isolated as the only product. In
contrast, incorporation of a methyl group at the terminal
position of the homoallyl side chain resulted in the
formation of 9b,c along with a minor amount of the
bicyclo[3.1.1]heptanones 10b,c.10 The diastereoselective
formation of the exocyclic E-enol ethers 9a-e is consis-
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tent with a torquoselective, conrotatory, outward rotation
of the OR1 substituents in the parent cyclobutenone.11

The stereochemistry of the major isomer of 9d was
established from NOE data to have the E-configuration
of the exocyclic enol ether group; i.e., irradiation of the
Ha-absorption of the major isomer showed an enhance-
ment (10%) in the absorption of Hb while an analogous
study using the minor isomer showed a weaker effect.
On the basis of these data, E-stereochemistry is assumed
for the 2-methoxyethenyl group in the other bicyclo[3.2.0]-
heptanones, all of which were formed as single diaster-
eomers.
A trans relationship between the methyl groups in 9b

would be expected assuming a concerted intramolecular
ketene/alkene cycloaddition. This was confirmed by NOE
studies. That is, 9a was methylated (LDA, CH3I, 59%)

to give a 9:1 mixture of 11 and 9b. Irradiation of the
Hb-absorption in these diastereomers showed an enhance-
ment (2%) of the Hc-absorption in 9b and no effect in 11.
On the basis of these data, the indicated stereochemistry
of 9c is also reasonable.
An application of the 3-homoallylcyclobutenone rear-

rangement to bicyclo[3.2.0]heptanones is shown in Scheme
3, which depicts the total synthesis of the sesquiterpene
natural product (()-precapnelladiene (15). Hydrolysis of
9e gave a 10:1 mixture of diastereomeric aldehydes,
which favored the desired R-epimer.14 Chemoselective
thioacetalization of the aldehyde carbonyl followed by
reduction with W-2 Raney nickel afforded ketone 12 (42%
from 9e).15 The addition of vinyllithium, followed by oxy-
Cope rearrangement4,5,16,17 and trapping of the resulting
enolate as its diphenyl phosphate derivative,18 afforded
a 5:1 mixture of 13 and 14 (59%). Exposure of 13 to
AlMe3 in the presence of catalytic Pd[PPh3]418 provided
15 (44%).19 Highlights of the above synthesis include
establishment of the stereochemistry of the cyclopentyl
methyl group at the bicyclo[3.2.0]heptanone stage and
control of the 1,5-cyclooctadiene regiochemistry through
the oxy-Cope ring expansion.
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